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Low energy excitations of a quasi-2D Bose-Einstein condensate
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Abstract. Starting from the Gross-Pitaevskii energy functional of the 3D Bose-Einstein Condensate, we
derive approximately the energy functional and the effective coupling constant of the quasi-2D condensate.
The evolution of the quasi-2D condensate wave function is studied by a variational method. Low energy
excitation spectra for both positive and negative scattering lengths are analyzed. The condition of collapse
instability of a quasi-2D Bose gas with attractive particle interaction is also proposed.

PACS. 03.75.Fi Phase coherent atomic ensembles; quantum condensation phenomena – 03.65.Ge Solutions
of wave equations: bound states

Since 1995, when Bose-Einstein Condensation (BEC) in
trapped alkali vapors was first observed [1–3], the physics
of BEC has been of great interest both for theoretical and
experimental physicists. Among others, the influence of
dimensionality is now a subject of extensive study. The
possibility of tightly confining the motion of trapped par-
ticles in one direction and creating a quasi-2D gas has long
been suggested theoretically. When the frequency ωz of
the tight confinement is such that }ωz is much larger than
the thermal energy kBT and the meanfield inter-particle
interaction n0g (n0 is the gas density, and g the coupling
constant), the gas is kinematically 2D, in the confined di-
rection the particles are “frozen” and undergo zero-point
oscillations. Recently quasi-2D, as well as 1D, BEC has
been observed in MIT [4].

In this paper we will use the variational method based
on Gaussian trial wave function [5] to study the low en-
ergy collective excitations of a quasi-2D condensate both
for positive and negative scattering lengths at T = 0.
Collective excitations of 3D Bose condensates have been
widely investigated theoretically and experimentally and
good agreement between the numerical and the experi-
mental results has been found [6]. For quasi-2D and 1D
Bose gases with repulsive interactions, analytical expres-
sions for the frequency spectra of the collective excitations
have been found by Ho and Ma [7] in the large particle
number limit. Our approach is valid for arbitrary particle
number and obtains the dependence of the frequency on
the number of particles. The paper is nothing more than
a useful study of the limiting case of [5] by Pérez-Garcia
et al. with tightly confinement in one direction.
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For 3D dilute Bose gases an appropriate description of
the excitations can be obtained from the time-dependent
Gross-Pitaevskii (GP) equation for the order parameter [6]
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2)/2 is the anisotropic harmonic trapping po-
tential, and g = 4π}2a/m is the coupling constant, where
a is the s-wave scattering length. Ψ(r) is normalised to the
total number of particles∫

d3r |Ψ (r)|2 = N. (2)

Equation (1) can also be obtained by a variational proce-
dure [6]

i}
∂

∂t
Ψ =

δE

δΨ∗
(3)

with the energy functional E given by
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For an axially symmetric trap with ωz � ω0 = ωx = ωy
and }ωz � n0g, the particles are frozen in the z-direction
and undergo zero-point oscillations. Then Ψ (r) can be ap-
proximately written as

Ψ (r) = Φ (ρ)ϕ0 (z) (5)

where ρ = {x, y} and ϕ0 =
(
1/πl2

)1/4 exp
(
−z2/2l

)
is the

normalized ground state wave function of the bare trap
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in z-direction with l = (}/mωz)
1
2 , the width of Gaussian.

The normalization condition then reduces to∫
d2ρ |Φ (ρ)|2 = N. (6)

Substituting (5) into (4) and integrating with respect to z,
we obtain
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where ∇2 is the gradient operator in two dimensional
space, V2 = mω2

0ρ
2/2 and g2 =

√
8π}2a/ml. g2 is the

effective coupling constant of the quasi-2D Bosons. It de-
pends not only on the scattering length a but also on the
frequency of the tight confinement through l. The expres-
sion of g2 thus obtained is in accord with that derived
from scattering theory in the limit l� |a| [8].

Using the variational procedure, one can obtain from
equation (7) the quasi-2D time-dependent GP equation
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Theoretical analyzes have shown that for 2D Bose gases
energy functional and equation of the form (7) and (8)
respectively, will suffice for practical purposes [9].

The quasi-2D GP equation (8) can be readily recov-
ered by the minimization of the action L associated to the
Lagrangian density L̃
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By applying small time-dependent disturbances to the
trapping potential V2 (ρ), one expects small oscillations
of the order parameter around its ground state value. We
will study the evolution of the condensate wave function
with use of the variational method based on Ritz’s op-
timization procedure. A Gaussian with some free (time-
dependent) parameters is selected as the trial function,
since it is precisely the ground state wave function of the
noninteracting Bose gases in the harmonic trap, namely

Φ (x, y, t) = A (t)
∏
η=x,y

exp
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At a given t, this function defines a Gaussian distribution
at the position (x0, y0) with amplitude A (t), width wη,
slope αη and curvature βη where η = {x, y}.

In order to find the equations governing the evolution
of these variational parameters, we insert equation (10)

into equation (9) and calculate the Lagrangian L by inte-
grating the Lagrangian density over the 2D space coordi-
nates. We find
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where we have made use of the normalization condi-
tion (6), namely π |A|2wxwy = N , to eliminate the
parameter A.

Using the Euler-Lagrange equations for each varia-
tional parameter, we derive from equation (11) the fol-
lowing equations
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where η = {x, y}. Equation (12) shows explicitly that the
center of the condensate will oscillate with the bare fre-
quency of the harmonic trap. This fact implies that in the
presence of the harmonic trap the motion of the center
of mass is exactly decoupled from the internal degrees of
freedom, as is generally the case [6]. Equations (13, 14) are
nonlinear coupled equations for the width of the conden-
sate, from which frequencies of the low energy excitations
can be found. βη and αη can be obtained from η0 and wη
through equation (15). Once η0 (t) and wη (t) are worked
out, the evolution of the Gaussian-like atomic cloud will
be completely determined.

With the use of suitably scaled variables τ = ω0t,
g̃2 = g2m/2π}2 and w̃η = wη/a⊥ where a⊥ =

√
}/mω0,

equations (13, 14) can be written in simple form as follows.
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2 · (17)

Equations (16, 17) describe small oscillations around the
equilibrium width, which corresponds to the stationary so-
lution of the equations. Taking into account the symmetry
of the system, the width of equilibrium can be readily ob-
tained

w̃0 = w̃x = w̃y = (1 + g̃2N)
1
4 . (18)
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Equation (18) gives explicitly the dependence of the equi-
librium width on the effective coupling constant and par-
ticle number. For attractive particle interactions w̃0 will
no longer be a real number when |g̃2N | > 1, which implies
a collapse of the condensate.

Expanding equations (16, 17) around the equilibrium
point defined by (18) to the first power of δw̃η = w̃η− w̃0,
we obtain equations for δw̃η
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Introducing δw̃± = δw̃x ± δw̃y, the above equations can
be converted into a simple decoupled form
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δw̃+ + 4δw̃+ = 0, (21)
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Equations (21, 22) show that there appear two oscillatory
modes in the condensate with frequencies

ωa = 2ω0 (23)

and

ωb = ω0

√
4 + 2g̃2N

1 + g̃2N
(24)

ωa corresponds to a breathing oscillation. The existence
of this breathing oscillatory mode with frequency 2ω0 is a
direct consequence of the hidden symmetry of the system.
For 2D atoms in a harmonic trap interacting by a local
potential, one expects well-defined modes with a frequency
of exactly 2ω0 [10]. ωb depends on g̃2 as well as on N . In
the noninteracting limit g̃2N → 0, one has ωa = ωb = 2ω0,
as predicted for the ideal oscillator. For a system with a
large number of particles g̃2N � 1, one has ωb =

√
2ω0,

in agreement with the result of Ho and Ma for n = |m| =
2 [7]. The dependence of ωb on N is plotted in Figure 1.

To understand the nature of these excitations, we com-
pare them with the results of Ho and Ma [7] and classify
the modes via their rotational properties. With m as the
quantum number of the angular momentum along z-axis,
ωa is referred to as m = 0 mode, the center of mass mo-
tion as m = +1 and m = −1 modes, and ωb corresponds
to a linear superposition of m = +2 and m = −2 modes
with real and equal-absolute-value coefficients.

We thank the referees for their helpful suggestions. This work
is supported by the Doctoral Foundation of the Ministry of
Chinese Education.

Fig. 1. Oscillation frequency ωb as a function of the parti-
cle number N of the condensate for positive (a) and negative
(b) scattering length, taking parameters of 23Na and 7Li re-
spectively and ωz/2π = 790 Hz. The limits of ideal gas (the
dashed line) and large particle number (the dotted line) are
also shown.
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